Publications
- Machine-Learning-Backed Evolutionary Exploration of Ti-rich SrTiO3(110) Surface Reconstructions. R. Wanzenböck, E. Heid, M. Riva, G. Franceschi, A. M. Imre, J. Carrete, U. Diebold, G. K. H. Madsen. Submitted (2024). Preprint: DOI:10.26434/chemrxiv-2024-9l6jc-v2
- Spatially resolved uncertainties for machine learning potentials. E. Heid, J. Schörghuber, R. Wanzenböck, G. K. H. Madsen. J. Chem. Inf. Model. (2024), 64, 6377-6387 DOI:10.1021/acs.jcim.4c00904
- LoGAN: Local generative adversarial network for novel structure prediction. P. Kovacs, E. Heid, G. K. H. Madsen. Submitted (2024). Preprint: DOI:10.26434/chemrxiv-2024-vf9l1
- Chemprop: A Machine Learning Package for Chemical Property Prediction. E. Heid, K. P. Greenman, Y. Chung, S.-C. Li, D. E. Graff, F. H. Vermeire, H. Wu, W. H. Green, C. J. McGill. J. Chem. Inf. Model. (2023), 64, 9-17 DOI:10.1021/acs.jcim.3c01250
- EnzymeMap: Curation, validation and data-driven prediction of enzymatic reactions. E. Heid, D. Probst, W. H. Green, G. K. H. Madsen. Chem. Sci. (2023), 14, 14229-14242. DOI:10.1039/D3SC02048G
- Deep Ensembles vs. Committees for Uncertainty Estimation in Neural-Network Force Fields: Comparison and Application to Active Learning. J. Carrete, J. Montes-Campos, R. Wanzenböck, E. Heid, G. K. H. Madsen. J. Chem. Phys. (2023), 158, 204801 DOI:10.1063/5.0146905
- Characterizing Uncertainty in Machine Learning for Chemistry. E. Heid, C. J. McGill, F. Vermeire, W. H. Green. J. Chem. Inf. Model. (2023), 63, 4012-4029 DOI:10.1021/acs.jcim.3c00373
- Machine Learning-Guided Discovery of New Electrochemical Reactions. A. Zahrt, Y. Mo, K. Nandiwale, R. Shprints, E. Heid, K. F. Jensen. J. Am. Chem. Soc. (2022), 144, 22599-22610 DOI:10.1021/jacs.2c08997
- On the Value of Using 3D Shape and Electrostatic Similarities in Deep Generative Methods. G. Bolcato, E. Heid, J. Boström. J. Chem. Inf. Model. (2022) 62, 1388-1398, DOI:10.1021/acs.jcim.1c01535
- Collectivity in ionic liquids: a temperature dependent, polarizable molecular dynamics study. A. Szabadi, P. Honegger, F. Schöfbeck, M. Sappl, E. Heid, O. Steinhauser, C. Schröder. Phys. Chem. Chem. Phys. (2022) 24, 15776-15790, DOI:10.1039/D2CP00898J
- Similarity based enzymatic retrosynthesis. K. Sankaranarayanan, E. Heid, C. W. Coley, D. Verma, W. H. Green, K. F. Jensen. Chem. Sci. (2022) 13, 6039-6053, DOI:10.1039/D2SC01588A
- Machine learning of reaction properties via learned representations of the condensed graph of reaction. E. Heid, W. H. Green. J. Chem. Inf. Model. (2022) 62, 2101-2110, DOI:10.1021/acs.jcim.1c00975
- Influence of Template Size, Canonicalization, and Exclusivity for Retrosynthesis and Reaction Prediction Applications. E. Heid, J. Liu, A. Aude, W. H. Green. J. Chem. Inf. Model. (2021) 62, 16-26, DOI:10.1021/acs.jcim.1c01192
- EHreact: Extended Hasse diagrams for the extraction and scoring of enzymatic reaction templates. E. Heid, S. Goldman, K. Sankaranarayaran, C. W. Coley, C. Flamm, W. H. Green. J. Chem. Inf. Model (2021) 61, 4949-4061, DOI:10.1021/acs.jcim.1c00921
- Solvation of anthraquinone and TEMPO redox-active species in acetonitrile using a polarizable force field. R. Berthin, A. Serva, K. G. Reeves, E. Heid, C. Schröder, M. Salanne. J. Chem. Phys. (2021) 155, 074504, DOI:10.1063/5.0061891
- Regio-selectivity prediction with a machine-learned reaction representation and on-the-fly quantum mechanical descriptors. Y. Guan, C. W. Coley, H. Wu, D. Ranasinghe, E. Heid, T. J. Struble, L. Pattanaik, W. H. Green, K. F. Jensen. Chem. Sci. (2021) 12, 2198-2208, DOI:10.1039/D0SC04823B
- The physical significance of the Kamlet–Taft π* parameter of ionic liquids. N. Weiß, C. H Schmidt, G. Thielemann, E. Heid, C. Schröder, S. Spange. Phys. Chem. Chem. Phys. (2021) 23, 1616-1626, DOI:10.1039/D0CP04989A
- Polarizable molecular dynamics simulations of ionic liquids: Influence of temperature control. E. Heid, S. Boresch, C. Schröder. J. Chem. Phys. (2020) 152, 094105, DOI:10.1063/1.5143746
- Understanding the nature of nuclear magnetic resonance relaxation by means of fast-field-cycling relaxometry and molecular dynamics simulations—the validity of relaxation models. P. Honegger, V. Overbeck, A. Strate, A. Appelhagen, M. Sappl, E. Heid, C. Schröder, R. Ludwig, O. Steinhauser. J. Phys. Chem. Lett. (2020) 11, 2165-2170, DOI:10.1021/acs.jpclett.0c00087
- Dielectric spectroscopy and time dependent Stokes shift: two faces of the same coin? P. Honegger, E. Heid, C. Schröder, O. Steinhauser. Phys. Chem. Chem. Phys. (2020) 22, 18388-18399, DOI:10.1039/D0CP02840A
- Computational solvation dynamics: Implementation, application, and validation. C. Schröder, E. Heid. Annu. Rep. Comput. Chem. (2020) 16, 93-154, DOI:10.1016/bs.arcc.2020.07.001
- Computational spectroscopy of trehalose, sucrose, maltose, and glucose: A comprehensive study of TDSS, NQR, NOE, and DRS. E. Heid, P. Honegger, D. Braun, A. Szabadi, T. Stankovic, O. Steinhauser, C. Schröder. J. Chem. Phys. (2019) 150, 175102, DOI:10.1063/1.5095058
- Toward prediction of electrostatic parameters for force fields that explicitly treat electronic polarization. E. Heid, M. Fleck, P. Chatterjee, C. Schröder, A. D. MacKerell Jr. J. Chem. Theory Comput. (2019) 15, 2460-2469, DOI:10.1021/acs.jctc.8b01289
- Changes in protein hydration dynamics by encapsulation or crowding of ubiquitin: strong correlation between time-dependent Stokes shift and intermolecular nuclear Overhauser effect. P. Honegger, E. Heid, S. Schmode, C. Schröder, O. Steinhauser. RSC Adv. (2019) 9, 36982-36993, DOI:10.1039/C9RA08008B
- Solvation dynamics: improved reproduction of the time-dependent Stokes shift with polarizable empirical force field chromophore models. E. Heid, S. Schmode, P. Chatterjee, A. D. MacKerell Jr, C. Schröder. Phys. Chem. Chem. Phys. (2019) 21, 17703-17710, DOI:10.1039/C9CP03000J
- Fundamental limitations of the time-dependent Stokes shift for investigating protein hydration dynamics. E. Heid, D. Braun. Phys. Chem. Chem. Phys. (2019) 21, 4435-4443, DOI:10.1039/C8CP07623E
- Polarizability in ionic liquid simulations causes hidden breakdown of linear response theory. E. Heid, C. Schröder. Phys. Chem. Chem. Phys. (2019) 21, 1023-1028, DOI:10.1039/C8CP06569A
- Additive polarizabilities of halides in ionic liquids and organic solvents. E. Heid, M. Heindl, P. Dienstl, C. Schröder. J. Chem. Phys. (2018) 149, 044302, DOI:10.1063/1.5043156
- Langevin behavior of the dielectric decrement in ionic liquid water mixtures. E. Heid, B. Docampo-Alvarez, L. M. Varela, K. Prosenz, O. Steinhauser, C. Schröder. Phys. Chem. Chem. Phys. (2018) 20, 15106-15117, DOI:10.1039/C8CP02111B
- Solvation dynamics in polar solvents and imidazolium ionic liquids: failure of linear response approximations. E. Heid, C. Schröder. Phys. Chem. Chem. Phys. (2018) 20, 5246-5255, DOI:10.1039/C7CP07052G
- Quantum mechanical determination of atomic polarizabilities of ionic liquids. E. Heid, A. Szabadi, C. Schröder. Phys. Chem. Chem. Phys. (2018) 20, 10992-10996, DOI:10.1039/C8CP01677A
- Evaluating excited state atomic polarizabilities of chromophores. E. Heid, P. A. Hunt, C. Schröder. Phys. Chem. Chem. Phys. (2018) 20, 8554-8563, DOI:10.1039/C7CP08549D
- Effect of a tertiary butyl group on polar solvation dynamics in aqueous solution: a computational approach. E. Heid, C. Schröder. J. Phys. Chem. B (2017) 121, 9639-9646, DOI:10.1021/acs.jpcb.7b05039
- Thioglycolate-based task-specific ionic liquids: Metal extraction abilities vs acute algal toxicity. S. Platzer, R. Leyma, S. Wolske, W. Kandioller, E. Heid, C. Schröder, M. Schagerl, R. Krachler, F. Jirsa, B. K. Keppler. J. Hazard. Mater. (2017) 340, 113-119, DOI:10.1016/j.jhazmat.2017.06.053
- On the validity of linear response approximations regarding the solvation dynamics of polyatomic solutes. E. Heid, W. Moser, C. Schröder. Phys. Chem. Chem. Phys. (2017) 19, 10940-10950, DOI:10.1039/C6CP08575J
- Computational solvation dynamics of oxyquinolinium betaine linked to trehalose. E. Heid, C. Schröder. J. Chem. Phys. (2016) 145, 164507, DOI:10.1063/1.4966189
- The small impact of various partial charge distributions in ground and excited state on the computational Stokes shift of 1-methyl-6-oxyquinolinium betaine in diverse water models. E. Heid, S. Harringer, C. Schröder. J. Chem. Phys. (2016) 145, 164506, DOI:10.1063/1.4966147
- Additive polarizabilities in ionic liquids. C. E. S. Bernardes, K. Shimizu, J. N. C. Lopes, P. Marquetand, E. Heid, O. Steinhauser, C. Schröder. Phys. Chem. Chem. Phys. (2016) 18, 1665-1670, DOI:10.1039/C5CP06595J